Квадратные уравнения. Вся теория.

Из этой статьи вы узнаете:

 

Что такое квадратные уравнения

Квадратные уравнения — это уравнения вида  ax2 + bx + c = 0

где  x — переменная,  a, b, c — некоторые числа, причем a ≠ 0 .

Коэффициенты квадратного уравнения

Числа   a, b, c называют коэффициентами уравнения, причем каждое из них  имеет свое название:

Число а называют первым (или старшим) коэффициентом. Число b — вторым коэффициентом, а число c — свободным членом.

Пример 1:

квадратное уравнение   – 3x2 + 4x + 7 = 0   имеет следующие коэффициенты :

a = –3,  b = 4,  c = 7.

Пример 2:

квадратное уравнение    6x2 – 4x – 7 = 0 имеет следующие коэффициенты :

a = 6,  b = –4,  c = –7.

Неполные квадратные уравнения и их решение

Если в квадратном уравнении   хотя бы один из коэффициентов  b и c  равен нулю, то такое уравнение называется неполным.

Существует три вида неполных квадратных уравнений:

  1. ax2 = 0 ( в случае, когда  b = 0,   с = 0)
  2. ax2 + bx = 0 ( в случае, когда  b ≠ 0,   с = 0)
  3. ax2 + c = 0 ( в случае, когда  b = 0,   с ≠ 0)

Неполные квадратные уравнения легко решаются, рассмотрим решение каждого вида:

ax2 = 0

Поскольку a ≠ 0, то данное уравнение имеет всего один корень  x = 0.

Например, квадратное уравнение  –19 x2 = 0 имеет один корень :  x = 0.

ax2 + bx = 0

Для решения такого уравнения выносят x за скобки и получают уравнение вида

x (ax + b) = 0

Это уравнение имеет всегда два корня (так как в левой части у нас два множителя    x  и (ax + b), а если хотя бы один из множителей равен нулю, то и все произведение равно нулю) .

x1 = 0, а   x2 можно найти, решив простое линейное уравнение в скобках :

ax + b = 0

ax = –b

x2 = –b/a

Например, решим квадратное уравнение  5x2  + 2x = 0

x(5x + 2)= 0  Сразу напишем, что x1 = 0.  Далее найдем x2.

Для этого решим уравнение 5x + 2 = 0

5x = –2

x =  –2/5

Ответ:   x1 = 0,  x2 = –2/5

ax2 + c = 0

Это уравнение также нужно преобразовать:

ax2 =–c

x2 = –c/a

Так как с ≠ 0, то возможны два случая: –c/a < 0,   и  –c/a > 0.

В первом случае уравнение x2 = –c/a  корней не имеет, так как квадрат числа всегда положительный.  Во втором случае, то есть когда –c/a > 0, уравнение имеет два корня:

 

 

Пример 1:

2x2  + 8 = 0

2x2 = -8

x2 = –8/2

x2 = –4   Корней нет.

Пример 2:

3x2  – 15 = 0

3x2 = 15

x2 = 15/3

x2 = 5

 

Приведённое квадратное уравнение

Если в квадратном уравнении коэффициент a = 1, то такое уравнение называют приведённым. Приведенные уравнения также могут быть неполными.

Примеры приведённых уравнений:

 

 

 

 

Любое неприведённое квадратное уравнение можно  преобразовать в приведённое, разделив обе части уравнения  на коэффициент a, (поскольку в левой части уравнения сумма, то на а делим каждое слагаемое):

 

 

 

Пример 1:

Преобразуем неприведённое квадратное уравнение 2x2 – 6x + 8 = 0 в приведённое, для этого делим левую и правую часть уравнения на 2, получаем приведённое уравнение:

x– 3x + 4 = 0

Пример 2:

–4x2 + 12x = 0  Делим обе части уравнения на -4, и получаем приведённое уравнение:

x2 – 3x = 0

Решение  квадратного уравнения    ax2 + bx + c = 0

Для того, чтобы решить квадратное уравнение, нужно сначала найти его дискриминант (D)      по формуле:

При этом возможны три случая:

  • D < 0
  • D = 0
  • D > 0

__________________________________________________

  • Если D < 0, то уравнение корней не имеет.
  • Если D = 0, то уравнение имеет один корень :

  • Если D > 0, то уравнение имеет два корня:

————————————————————————————————————-

Формула корней квадратного уравнения выглядит так:

Эта формула подходит и для второго случая, когда D = 0, так как

Алгоритм решения квадратного уравнения

  • Найти дискриминант D
  • Если D < 0, написать, что корней нет
  • Если D ≥ 0 , найти корни по формуле корней квадратного уравнения.

_________________________________________________________________

Пример 1:

Для данного уравнения   a = 3,  b = -2,  с = -16

Дискриминант  уравнения:

 

 

Дискриминант больше нуля, находим корни:

 

 

 

Пример 2 :

Для данного уравнения   a = -0,5    b = 2     c = -2

Дискриминант  уравнения:

 

Уравнение имеет один корень. Найдем его:

 

 

 

Пример 3 :

Для данного уравнения   a = 1    b = -6     c = 11

Дискриминант  уравнения:

Дискриминант    D<0,  корней нет

Ответ:  корней нет.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

© 2024 Kid-mama